Trang chủ Lớp 8 SBT Toán 8 - Kết nối tri thức Chương 4. Định lí Thales Bài hỏi trắc nghiệm trang 53, 54 SBT Toán 8 - Kết nối tri thức với cuộc sống: Cho tam giác ABC có \(BC = 13cm. \) E và F lần lượt là trung điểm của AB, AC...

Bài hỏi trắc nghiệm trang 53, 54 SBT Toán 8 - Kết nối tri thức với cuộc sống: Cho tam giác ABC có \(BC = 13cm. \) E và F lần lượt là trung điểm của AB, AC...

Trả lời Câu 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 câu hỏi trắc nghiệm trang 53, 54 sách bài tập toán 8 - Kết nối tri thức với cuộc sống - Bài tập cuối chương IV. Cho tam giác ABC có \(BC = 13cm. \) E và F lần lượt là trung điểm của AB, AC....

Câu hỏi:

Câu 1

Cho tam giác ABC có \(BC = 13cm.\) E và F lần lượt là trung điểm của AB, AC. Độ dài EF bằng:

A. 13cm

B. 26cm

C. 6,5cm

D. 3cm

Hướng dẫn giải :

Sử dụng kiến thức về đường trung bình của tam giác để tìm EF: Đường trung bình của tam giác song song với cạnh thứ ba và bằng nửa cạnh ấy.

Lời giải chi tiết :

Tam giác ABC có E và F lần lượt là trung điểm của AB, AC nên EF là đường trung bình của tam giác. Do đó, \(FE = \frac{1}{2}BC = 6,5cm\)

Chọn C


Câu hỏi:

Câu 2

Độ dài x trong Hình 5.13 là

image

A. 20

B. 50

C. 12

D. 30

Hướng dẫn giải :

Sử dụng kiến thức về định lí Thalès để tính x: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ

Lời giải chi tiết :

Vì \(\widehat {ADE} = \widehat B\) (gt), mà hai góc này ở vị trí đồng vị nên DE//BC.

Tam giác ABC có DE//BC nên theo định lí Thalès ta có: \(\frac{{AD}}{{BD}} = \frac{{AE}}{{EC}}\)

\(\frac{{12}}{{18}} = \frac{x}{{30}}\) nên \(x = \frac{{12.30}}{{18}} = 20\)

Chọn A


Câu hỏi:

Câu 3

Cho tam giác ABC cân tại B. Hai trung tuyến AM, BN cắt nhau tại G. Gọi I và K lần lượt là trung điểm của GB, GC. Khẳng định nào đúng?

A. \(MN = \frac{1}{2}AC\)

B. \(BC = \frac{1}{2}IK\)

C. \(MN > IK\)

D. \(MN = IK\)

Hướng dẫn giải :

Sử dụng kiến thức về đường trung bình của tam giác để tìm câu đúng: Đường trung bình của tam giác song song với cạnh thứ ba và bằng nửa cạnh ấy.

Lời giải chi tiết :

image

Tam giác ABC cân tại B nên \(AB = BC\) (1)

Tam giác ABC có M, N lần lượt là trung điểm của BC, AC nên MN là đường trung bình của tam giác. Do đó, \(MN = \frac{1}{2}AB\) (2)

Tam giác GBC có I, K lần lượt là trung điểm của BG, GC nên IK là đường trung bình của tam giác. Do đó, \(IK = \frac{1}{2}BC\) (3)

Từ (1), (2) và (3) suy ra: \(MN = IK\)

Chọn D.


Câu hỏi:

Câu 4

Cho hình thang ABCD (AB//DC). Gọi O là giao điểm của AC và BD. Xét các khẳng định sau:

(1) \(\frac{{OA}}{{OC}} = \frac{{OD}}{{OB}}\)

(2) \(OA.OD = OB.OC\)

(3) \(\frac{{AO}}{{AC}} = \frac{{BO}}{{BD}}\)

Số khẳng định đúng là:

A. 0

B. 1

C. 2

D. 3

Hướng dẫn giải :

Sử dụng kiến thức về định lí Thalès để tìm khẳng định đúng: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ.

Lời giải chi tiết :

image

Qua O kẻ OM//AB//CD (M thuộc AD).

Tam giác ADC có: OM//DC nên \(\frac{{OA}}{{OC}} = \frac{{MA}}{{MD}},\frac{{OA}}{{AC}} = \frac{{AM}}{{AD}}\)

Tam giác ADB có: OM//AB nên \(\frac{{OB}}{{OD}} = \frac{{MA}}{{MD}},\frac{{BO}}{{BD}} = \frac{{AM}}{{AD}}\)

Do đó, \(\frac{{OA}}{{OC}} = \frac{{OB}}{{OD}}\) và \(\frac{{AO}}{{AC}} = \frac{{BO}}{{BD}}\)

Vì \(\frac{{OA}}{{OC}} = \frac{{OB}}{{OD}}\) nên \(OA.OD = OB.OC\)

Vậy khẳng định (3) và (2) đúng.

Chọn C.


Câu hỏi:

Câu 5

Cho Hình 5.14, biết DE//AC. Độ dài x là

image

A. 5

B. 7

C. 6,5

D. 6,25

Hướng dẫn giải :

Sử dụng kiến thức về định lí Thalès để tính x: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ.

Lời giải chi tiết :

Tam giác ABC có: DE//AC nên theo định lí Thalès ta có: \(\frac{{DB}}{{DA}} = \frac{{BE}}{{EC}}\)

\(\frac{5}{2} = \frac{x}{{2,5}}\) nên \(x = \frac{{5.2,5}}{2} = 6,25\)

Chọn D


Câu hỏi:

Câu 6

Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Biết \(AG = 4cm\), độ dài của EI, DK là

A. \(EI = DK = 3cm\)

B. \(EI = 3cm,DK = 2cm\)

C. \(EI = DK = 2cm\)

D. \(EI = 1cm,DK = 2cm\)

Hướng dẫn giải :

Sử dụng kiến thức về đường trung bình của tam giác để tìm EI, DK: Đường trung bình của tam giác song song với cạnh thứ ba và bằng nửa cạnh ấy

Lời giải chi tiết :

image

Vì BD, CE là các đường trung tuyến của tam giác ABC nên D, E lần lượt là trung điểm của AC, AB.

Tam giác ABG có I, E lần lượt là trung điểm của GB, AB nên IE là đường trung bình của tam giác ABG. Do đó, \(EI = \frac{1}{2}AG = 2cm\)

Tam giác AGC có D, K lần lượt là trung điểm của AC, GC nên DK là đường trung bình của tam giác AGC. Do đó, \(DK = \frac{1}{2}AG = 2cm\)

Chọn C.


Câu hỏi:

Câu 7

Cho Hình 5.15, biết \(ED \bot AB,AC \bot AB.\) Khi đó, x có giá trị là

image

A. 2,5

B. 2

C. 3

D. 4

Hướng dẫn giải :

Sử dụng kiến thức về định lí Thalès để tính x: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ.

Lời giải chi tiết :

Vì \(ED \bot AB,AC \bot AB\) nên ED//AC

Tam giác ABC có: ED//AC nên theo theo định lí Thalès ta có: \(\frac{{BD}}{{AB}} = \frac{{BE}}{{BC}}\)

\(\frac{6}{{3 + 6}} = \frac{{3x}}{{13,5}}\) nên \(3x = \frac{{6.13,5}}{9} = 9\), suy ra \(x = \frac{9}{3} = 3\)

Chọn C


Câu hỏi:

Câu 8

Cho \(\Delta ABC\). Tia phân giác góc trong của góc A cắt BC tại D. Cho \(AB = 6,AC = x,BD = 9,BC = 21\). Độ dài x bằng

A. 4

B. 6

C. 12

D. 14

Hướng dẫn giải :

Sử dụng kiến thức về tính chất đường phân giác của tam giác để tìm x: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề với hai đoạn thẳng ấy.

Lời giải chi tiết :

image

Vì AD là tia phân giác góc BAC của tam giác ABC nên \(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}}\)

\(\frac{9}{{21 - 9}} = \frac{6}{x}\), suy ra \(x = \frac{{12.6}}{9} = 8\)

Không có đáp án


Câu hỏi:

Câu 9

Cho tam giác ABC có AD là tia phân giác của góc BAC. Biết \(AB = 3cm,BD = 4cm,CD = 6cm\). Độ dài AC bằng

A. 4cm

B. 5cm

C. 6cm

D. 4,5cm

Hướng dẫn giải :

Sử dụng kiến thức về tính chất đường phân giác của tam giác để tìm AC: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề với hai đoạn thẳng ấy.

Lời giải chi tiết :

image

Vì AD là tia phân giác góc BAC của tam giác ABC nên \(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}}\)

\(\frac{4}{6} = \frac{3}{x}\), suy ra \(x = \frac{{6.3}}{4} = 4,5\left( {cm} \right)\)

Chọn D


Câu hỏi:

Câu 10

Cho \(\Delta ABC\) đều, cạnh 3cm; M, N lần lượt là trung điểm AB, AC. Chu vi của tứ giác MNCB bằng

A. 8cm

B. 7,5cm

C. 6cm

D. 7cm

Hướng dẫn giải :

Sử dụng kiến thức về đường trung bình của tam giác để tính: Đường trung bình của tam giác song song với cạnh thứ ba và bằng nửa cạnh ấy.

Lời giải chi tiết :

image

Tam giác ABC đều \(AB = AC = BC = 3cm\)

Vì M, N lần lượt là trung điểm AB, AC nên \(BM = \frac{1}{2}AB = \frac{3}{2}cm,NC = \frac{1}{2}AC = \frac{3}{2}cm\)

Tam giác ABC có M, N lần lượt là trung điểm AB, AC nên MN là đường trung bình của tam giác ABC.

Suy ra \(MN = \frac{1}{2}BC = \frac{3}{2}cm\)

Chu vi tứ giác MNCB là:

\(BM + MN + NC + BC = \frac{3}{2} + \frac{3}{2} + \frac{3}{2} + 3 = 7,5\left( {cm} \right)\)

Chọn B


Câu hỏi:

Câu 11

Cho tam giác ABC có \(AB = 6cm,AC = 8cm,BC = 10cm.\) Gọi H, I, K lần lượt là trung điểm của AB, BC, AC. Chu vi tứ giác AHIK bằng:

A. 7cm

B. 14cm

C. 24cm

D. 12cm

Hướng dẫn giải :

Sử dụng kiến thức về đường trung bình của tam giác để tính: Đường trung bình của tam giác song song với cạnh thứ ba và bằng nửa cạnh ấy

Lời giải chi tiết :

image

Vì K, H lần lượt là trung điểm của AB, AC nên \(AK = \frac{1}{2}AC = 4cm,AH = \frac{1}{2}AB = 3cm\)

Tam giác ABC có H, I lần lượt là trung điểm của AB, BC nên HI là đường trung bình của tam giác ABC nên \(HI = \frac{1}{2}AC = 4cm\)

Tam giác ABC có K, I lần lượt là trung điểm của AC, BC nên KI là đường trung bình của tam giác ABC nên \(KI = \frac{1}{2}AB = 3cm\)

Chu vi tứ giác AHIK là:

\(KI + HI + AH + AK = 3 + 4 + 3 + 4 = 14\left( {cm} \right)\)

Chọn B.


Câu hỏi:

Câu 12

Cho hình thoi ABCD có M là trung điểm của AD, đường chéo AC cắt BM tại điểm E (H.5.16)

image

Tỉ số \(\frac{{EM}}{{EB}}\) bằng

A. \(\frac{1}{3}\)

B. 2

C. \(\frac{1}{2}\)

D. \(\frac{2}{3}\)

Hướng dẫn giải :

Sử dụng kiến thức về tính chất đường phân giác của tam giác để chứng minh: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề với hai đoạn thẳng ấy.

Lời giải chi tiết :

Vì tứ giác ABCD là hình thoi nên AC là tia phân giác của góc BAD và \(AD = AB\)

Tam giác ABM có AE là tia phân giác của góc BAM nên \(\frac{{EM}}{{EB}} = \frac{{AM}}{{AB}}\) (tính chất đường phân giác trong tam giác).

Mà M là trung điểm của AD nên \(AM = \frac{1}{2}AD = \frac{1}{2}AB\)

Do đó, \(\frac{{EM}}{{EB}} = \frac{{\frac{1}{2}AB}}{{AB}} = \frac{1}{2}\)

Chọn C

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Kết nối tri thức với cuộc sống

- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 8

Lớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK