Chọn một phương án đúng trong mỗi câu sau:
Trong các đẳng thức sau, cái nào là hằng đẳng thức
A.\(a\left( {a + 1} \right) = a + 1\)
B.\({a^2} - 1 = a\).
C.\(\left( {a + b} \right)\left( {a - b} \right) = {a^2} + {b^2}\)
D.\(\left( {a + 1} \right)\left( {a + 2} \right) = {a^2} + 3a + 2\).
Hằng đẳng thức là đẳng thức mà hai vế luôn cùng nhận một giá trị khi thay các chữ trong đẳng thức bằng các số tùy ý.
Ta có: \(\;\left( {a + 1} \right)\left( {a + 2} \right) = {a^2}\; + 2a + a + 2 = {a^2}\; + 3a + 2.\)
Do đó đẳng thức trên là một đẳng thức.
Các đẳng thức còn lại, khi thay một giá trị a, b bất kì vào hai vế ta được kết quả không bằng nhau nên không phải là hằng đẳng thức.
Chọn đáp án D.
Đa thức \({x^3} - 8\) được phân tích thành tích của hai đa thức
A.\(x - 2\) và \({x^2} - 2x - 4\)
B. \(x - 2\) và \({x^2} + 2x - 4\)
C. \(x - 2\) và \({x^2} + 2x + 4\)
D. \(x - 2\) và \({x^2} - 2x + 4\)
Sử dụng hằng đẳng thức
\({a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\).
Ta có: \({x^3}\;-8 = {x^3} - {2^3}\; = \left( {x - 2} \right)({x^2}\; + 2x + 4).\)
Chọn đáp án C.
Biểu thức \({x^2} + x + \frac{1}{4}\) viết được dưới dạng bình phương của một tổng là
A.\({\left[ {x + \left( { - \frac{1}{2}} \right)} \right]^2}\).
B.\({\left( {x + \frac{1}{2}} \right)^2}\).
C.\({\left( {2x + \frac{1}{2}} \right)^2}\)
D.\({\left( {\frac{1}{2}x + 1} \right)^2}\)
Sử dụng hằng đẳng thức
\({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\).
Ta có: \({x^2} + x + \frac{1}{4} = {x^2} + 2.x.\frac{1}{2} + {\left( {\frac{1}{2}} \right)^2} = {\left( {x + \frac{1}{2}} \right)^2}\).
Chọn đáp án B.
Khẳng định nào sau đây là đúng?
A. \(\left( {A - B} \right)\left( {{A^2} - AB + {B^2}} \right) = {A^3} - {B^3}\).
B. \(\left( {A + B} \right)\left( {{A^2} + AB + {B^2}} \right) = {A^3} + {B^3}\).
C. \(\left( {A + B} \right)\left( {{A^2} - AB + {B^2}} \right) = {A^3} - {B^3}\).
D. \(\left( {A + B} \right)\left( {{A^2} - AB + {B^2}} \right) = {A^3} + {B^3}\).
Ta sử dụng các hằng đẳng thức:
\({A^3}\; + {B^3}\; = \left( {A + B} \right)({A^2}\;-AB + {B^2})\);
\({A^3}\;-{B^3}\; = \left( {A-B} \right)({A^2}\; + AB + {B^2}).\)
Ta có:
\({A^3}\; + {B^3}\; = \left( {A + B} \right)({A^2}\;-AB + {B^2})\);
\({A^3}\;-{B^3}\; = \left( {A-B} \right)({A^2}\; + AB + {B^2}).\)
Chọn đáp án D.
Rút gọn biểu thức \(\left( {x + 1} \right)\left( {x - 1} \right) - \left( {x + 2} \right)\left( {x - 2} \right)\) ta được
A. 5.
B. 4.
C. 3.
D. -3.
Sử dụng hằng đẳng thức
\({a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\)
Sử dụng tính chất giao hoán, kết hợp thu gọn các đơn thức đồng dạng với nhau.
Ta có: \(\left( {x + 1} \right)\left( {x - 1} \right) - \left( {x + 2} \right)\left( {x - 2} \right)\)
\( = {x^2}\; - 1 - ({x^2}\; - {2^2}) = \;{x^2} - 1 - {x^2}\; + 4 = 3\).
Chọn đáp án C.
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK