Tìm các độ dài x, y trong Hình 4.6.
Áp dụng định lí Thalès
a) Áp dụng định lí Thalès vào ∆ABC, ta có:
\(\dfrac{{AM}}{{BM}} = \dfrac{{AN}}{{CN}}\) hay \(\dfrac{{6,5}}{x} = \dfrac{4}{2}\)
Suy ra \(x = \dfrac{{6,5.2}}{4} = 3,25\) (đvđd).
Vậy x = 3,25 (đvđd).
b) Ta có: PQ = PF + QF = 5 + 3,5 = 8,5 (đvđd).
Áp dụng định lí Thalès vào ∆PHQ, ta có:
\(\dfrac{{PE}}{{PH}} = \dfrac{{PF}}{{PQ}}\) hay \(\dfrac{4}{y} = \dfrac{5}{{8,5}}\)
Suy ra \(y = \dfrac{{4.8,5}}{5} = 6,8\) (đvđd).
Vậy y = 6,8 (đvđd)
Cho ∆ABC có AB = 6 cm, AC = 9 cm. Trên cạnh AB lấy điểm B’, trên cạnh AC lấy điểm C’ sao cho AB’ = 4 cm, AC’ = 6 cm (H.4.7).
• So sánh các tỉ số \(\dfrac{{AB’}}{{AB}}\) và \(\dfrac{{AC’}}{{AC}}\)
• Vẽ đường thẳng a đi qua B’ và song song với BC, đường thẳng qua a cắt AC tại điểm C’’. Tính độ dài đoạn thẳng AC’’.
• Nhận xét gì về hai điểm C’, C’’ và hai đường thẳng B’C’, BC?
Áp dụng định lí Thalès vào ∆ABC
• Ta có \(\dfrac{{AB’}}{{AB}} = \dfrac{4}{6} = \dfrac{2}{3};\dfrac{{AC’}}{{AC}} = \dfrac{6}{9} = \dfrac{2}{3}\)
Do đó \(\dfrac{{AB’}}{{AB}} = \dfrac{{AC’}}{{AC}}\)
• Đường thẳng a đi qua B’ và song song với BC, đường thẳng qua a cắt AC tại điểm C’’ nên B’C’’ // BC.
Áp dụng định lí Thalès vào ∆ABC, ta có:
\(\dfrac{{AB’}}{{AB}} = \dfrac{{AC”}}{{AC}}\) hay \(\dfrac{4}{6} = \dfrac{{AC”}}{9}\)
Suy ra: \(AC” = \dfrac{{4.9}}{6} = 6\)(cm).
Vậy AC’’ = 6 cm.
• Trên cạnh AC lấy điểm C’ sao cho AC’ = 6 cm.
Đường thẳng a đi qua B’ và song song với BC, đường thẳng qua a cắt AC tại điểm C’’ nên điểm C’’ nằm trên cạnh AC sao cho AC’’ = 6 cm.
Do đó, hai điểm C’, C’’ trùng nhau.
Vì hai điểm C’, C’’ trùng nhau mà B’C’’ // BC nên B’C’ // BC.
Cây cầu AB bắc qua một con sông có chiều rộng 300 m. Để đo khoảng cách giữa hai điểm C và D trên hai bờ con sông, người ta chọn một điểm E trên đường thẳng AB sao cho ba điểm E, C, D thẳng hàng. Trên mặt đất, người ta đo được AE = 400 m, EC = 500 m. Theo em, người ta tính khoảng cách giữa C và D như thế nào?
Hai cạnh AC và BD thuộc hai bờ của con sông nên AC // BD, áp dụng định lí Thalès
Hai cạnh AC và BD thuộc hai bờ của con sông nên AC // BD, áp dụng định lí Thalès, ta có:
\(\dfrac{{A{\rm{E}}}}{{AB}} = \dfrac{{CE}}{{C{\rm{D}}}}\) hay \(\dfrac{{400}}{{300}} = \dfrac{{500}}{{C{\rm{D}}}}\)
Suy ra \(C{\rm{D}} = \dfrac{{300.500}}{{400}} = 375\) (m).
Vậy khoảng cách giữa C và D bằng 375 m
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK