Trang chủ Lớp 8 SGK Toán 8 - Kết nối tri thức Chương 3. Tứ giác Giải mục 2 trang 59, 60, 61 Toán 8 tập 1 - Kết nối tri thức: Tứ giác DEBF là hình gì? Tại sao?...

Giải mục 2 trang 59, 60, 61 Toán 8 tập 1 - Kết nối tri thức: Tứ giác DEBF là hình gì? Tại sao?...

Hướng dẫn giải Câu hỏi 1, Luyện tập 2 , Thực hành 2, Câu hỏi 2, Luyện tập 3 , Vận dụng mục 2 trang 59, 60, 61 SGK Toán 8 tập 1 - Kết nối tri thức Bài 12. Hình bình hành. Hãy viết giả thiết, kết luận của Định lí 2... Tứ giác DEBF là hình gì? Tại sao?

Câu hỏi:

Câu hỏi 1

Hãy viết giả thiết, kết luận của Định lí 2.

Hướng dẫn giải :

Dựa vào định lí 2 vẽ hình và ghi giả thiết kết luận

Lời giải chi tiết :

image


Câu hỏi:

Luyện tập 2

Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB tại E và tia phân giác của góc B cắt CD tại F (H.3.32).

image

a) Chứng minh hai tam giác ADE và CBF là những tam giác cân, bằng nhau.

b) Tứ giác DEBF là hình gì? Tại sao?

Hướng dẫn giải :

a) Sử dụng tính chất của hình bình hành để chứng minh tam giác ADE, CBF là tam giác cân.

b) Chứng minh tứ giác DEBF có các cặp cạnh đối song song với nhan nên tứ giác DEBF là hình bình hành.

Lời giải chi tiết :

image

a) Vì ABCD là hình bình hành nên AB // CD hay BE // DF.

Vì DE là tia phân giác của \(\widehat {A{\rm{D}}C}\) nên \(\widehat {{D_1}} = \widehat {{D_2}}\)

Mà \(\widehat {{D_1}} = \widehat {{E_1}}\) (BE // DF, hai góc so le trong) nên \(\widehat {{D_2}} = \widehat {{E_1}}\)

Suy ra tam giác ADE cân tại A.

Tương tự ta cũng chứng minh được: tam giác BCF cân tại C.

Vì ABCD là hình bình hành nên AD = BC; \(\widehat A = \widehat C;\widehat {A{\rm{D}}C} = \widehat {ABC}\).

Vì AE là tia phân giác \(\widehat {A{\rm{D}}C}\); BF là tia phân giác \(\widehat {ABC}\) nên

\(\widehat {{B_1}} = \widehat {{B_2}};\widehat {{D_1}} = \widehat {{D_2}}\) mà \(\widehat {A{\rm{D}}C} = \widehat {ABC}\)

Do đó \(\widehat {{B_1}} = \widehat {{B_2}} = \widehat {{D_1}} = \widehat {{D_2}}\)

Xét ∆ADE và ∆CBF có:

\(\widehat A = \widehat C\)(chứng minh trên);

AD = BC (chứng minh trên);

\(\widehat {{B_2}} = \widehat {{D_2}}\) (chứng minh trên).

Do đó ∆ADE = ∆CBF (g.c.g).

b) Vì \(\widehat {{B_1}} = \widehat {{B_2}} = \widehat {{D_1}} = \widehat {{D_2}}\) mà \(\widehat {{B_2}} = \widehat {{F_1}}\) (vì tam giác BCF cân tại C)

Suy ra \(\widehat {{D_1}} = \widehat {{F_1}}\) (hai góc đồng vị).

Do đó DE // BF.

Tứ giác BEDF có:

BE // DF (chứng minh trên);

DE // BF (chứng minh trên).

Do đó, tứ giác BEDF là hình bình hành.


Câu hỏi:

Thực hành 2

Chia một sợi dây xích thành bốn đoạn: hai đoạn dài bằng nhau, hai đoạn ngắn bằng nhau và đoạn dài, đoạn ngắn xen kẽ nhau. Hỏi khi móc hai đầu mút của sợi dây xích đó lại để được một tứ giác ABCD (có các đỉnh tại các điểm chia) như Hình 3.33 thì tứ giác ABCD là hình gì? Tại sao?

image

Hướng dẫn giải :

Chứng minh tứ giác ABCD có các cặp góc đối bằng nhau nên ABCD là hình bình hành.

Lời giải chi tiết :

Đoạn dây xích được chia thành:

• Hai đoạn dài có độ dài bằng nhau, tức là AB = CD;

• Hai đoạn ngắn có độ dài bằng nhau, tức là AD = BC.

Tứ giác ABCD có AB = CD; AD = BC nên tứ giác ABCD là hình bình hành.


Câu hỏi:

Câu hỏi 2

Hãy biết giả thiết, kết luận của Định lí 3.

Hướng dẫn giải :

Dựa vào định lí 3 vẽ hình và ghi giả thiết kết luận

Lời giải chi tiết :

image

Giả thiết, kết luận của Định lí 3:

a)

GT

Tứ giác ABCD có \(\widehat A = \widehat C;\widehat B = \widehat D\)

KL

Tứ giác ABCD là hình bình hành

b)

GT

Tứ giác ABCD có AC cắt BD tại điểm O;

OA = OC; OB = OD.

KL

Tứ giác ABCD là hình bình hành


Câu hỏi:

Luyện tập 3

Cho hai điểm A, B phân biệt và điểm O không nằm trên đường thẳng AB. Gọi A’, B’ là các điểm sao cho O là trung điểm của AA’, BB’. Chứng minh rằng A’B’ = AB và đường thẳng A’B’ song song với đường thẳng AB.

Hướng dẫn giải :

Chứng minh tứ giác ABA’B’ là hình bình hành

Lời giải chi tiết :

image

Ta hai điểm A, B phân biệt và điểm O không nằm trên đường thẳng AB.

Mà O là trung điểm của AA’, BB’ nên O là trung điểm của hai đường chéo của tứ giác ABA’B’.

Do đó tứ giác ABA’B’ là hình bình hành.


Câu hỏi:

Vận dụng

Trở lại bài toán mở đầu. Em hãy vẽ hình và nêu cách vẽ con đường cần mở đi qua O sao cho theo con đường đó, hai đoạn đường từ O tới a và tới b bằng nhau.

Hướng dẫn giải :

- Vẽ bài toán theo yêu câu

- Chứng minh tứ giác ABCD là hình bình hành

Lời giải chi tiết :

Gọi điểm giao nhau giữa hai đường thẳng a và b là điểm O

image

- Vẽ tia Ax đi qua điểm O. Trên tia Ax lấy điểm B sao cho OA = OB.

- Qua B vẽ tia By // Ab; Bz // Aa cắt hai tia Aa và Bb lần lượt tại hai điểm C và D.

image

Khi đó, tứ giác ACBD là hình bình hành (vì AC // BD; AD // BC) có O là trung điểm AB nên O là trung điểm của CD.

Hai đoạn đường từ điểm O đến con đường a và b bằng nhau, tức là OC = OD.

Vậy con đường cần mở đường thẳng đi qua hai điểm C và D.

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Kết nối tri thức với cuộc sống

- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 8

Lớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK