Trang chủ Lớp 8 SGK Toán 8 - Kết nối tri thức Chương 1 Đa thức Giải mục 2 trang 12, 13, 14 Toán 8 tập 1 - Kết nối tri thức: Đa thức nêu trong tình huống mở đầu có phải đa thức thu gọn không?...

Giải mục 2 trang 12, 13, 14 Toán 8 tập 1 - Kết nối tri thức: Đa thức nêu trong tình huống mở đầu có phải đa thức thu gọn không?...

Hướng dẫn cách giải/trả lời Câu hỏi, Luyện tập 2, Luyện tập 3, Tranh luận mục 2 trang 12, 13, 14 SGK Toán 8 tập 1 - Kết nối tri thức Bài 2. Đa thức. Đa thức nêu trong tình huống mở đầu có phải đa thức thu gọn không?...

Câu hỏi:

Câu hỏi

Đa thức nêu trong tình huống mở đầu có phải đa thức thu gọn không?

Hướng dẫn giải :

Đa thức thu gọn là đa thức không có hai hạng tử nào đồng dạng.

Lời giải chi tiết :

Đa thức \({x^2} + {y^2} + \dfrac{1}{2}xy\) là đa thức thu gọn vì trong đa thức không có hai hạng tử nào đồng dạng.


Câu hỏi:

Luyện tập 2

Cho đa thức \(N = 5{y^2}{z^2} - 2x{y^2}z + \dfrac{1}{3}{x^4} - 2{y^2}{z^2} + \dfrac{2}{3}{x^4} + x{y^2}z\).

a) Thu gọn đa thức N.

b) Xác định hệ số và bậc của từng hạng tử (tức là bậc của từng đơn thức) trong dạng thu gọn của N.

Hướng dẫn giải :

a) Sử dụng tính chất giao hoán, kết hợp các hạng tử đồng dạng với nhau rồi thu gọn.

b) +) Hệ số là phần số.

+) Tổng số mũ của các biến trong đơn thức có hệ số khác 0 là bậc của đơn thức.

Lời giải chi tiết :

a)

\(\begin{array}{l}N = 5{y^2}{z^2} - 2x{y^2}z + \dfrac{1}{3}{x^4} - 2{y^2}{z^2} + \dfrac{2}{3}{x^4} + x{y^2}z\\ = \left( {5{y^2}{z^2} - 2{y^2}{z^2}} \right) + \left( { - 2x{y^2}z + x{y^2}z} \right) + \left( {\dfrac{1}{3}{x^4} + \dfrac{2}{3}{x^4}} \right)\\ = 3{y^2}{z^2} - x{y^2}z + {x^4}\end{array}\)

b) Đa thức có 3 hạng tử là: \(3{y^2}{z^2}; - x{y^2}z;{x^4}\)

Xét hạng tử \(3{y^2}{z^2}\) có hệ số là 3, bậc là 2+2=4.

Xét hạng tử \( - x{y^2}z\) có hệ số là -1, bậc là 1+2+1=4.

Xét hạng tử \({x^4}\) có hệ số là 1, bậc là 4.


Câu hỏi:

Luyện tập 3

Với mỗi đa thức sau, thu gọn (nếu cần) và tìm bậc của nó.

a) \(Q = 5{x^2} - 7xy + 2,5{y^2} + 2x - 8,3y + 1;\)

b) \(H = 4{x^5} - \dfrac{1}{2}{x^3}y + \dfrac{3}{4}{x^2}{y^2} - 4{x^5} + 2{y^2} - 7.\)

Hướng dẫn giải :

Sử dụng tính chất giao hoán, kết hợp các hạng tử đồng dạng với nhau rồi thu gọn.

Bậc của đa thức là bậc của hạng tử có bậc cao nhất trong dạng thu gọn của đa thức đó.

Lời giải chi tiết :

a) \(Q = 5{x^2} - 7xy + 2,5{y^2} + 2x - 8,3y + 1\) có bậc là 2.

b)

\(\begin{array}{l}H = 4{x^5} - \dfrac{1}{2}{x^3}y + \dfrac{3}{4}{x^2}{y^2} - 4{x^5} + 2{y^2} - 7\\ = \left( {4{x^5} - 4{x^5}} \right) - \dfrac{1}{2}{x^3}y + \dfrac{3}{4}{x^2}{y^2} + 2{y^2} - 7\\ = - \dfrac{1}{2}{x^3}y + \dfrac{3}{4}{x^2}{y^2} + 2{y^2} - 7\end{array}\)

Đa thức H có bậc là 4.


Câu hỏi:

Tranh luận

Bạn Trang nêu vấn đề: Một đa thức bậc hai thu gọn với hai biến (x và y) mà mỗi hạng tử của nó đều có hệ số bằng 1 thì có nhiều nhất là mấy hạng tử? Có ba bạn trả lời như sau:

Anh: Có 3 hạng tử

Bình: Có 5 hạng tử

Chung: Có 6 hạng tử

Em hãy nêu ý kiến của mình và cho biết đó là đa thức nào.

Hướng dẫn giải :

Đa thức bậc hai thu gọn với hai biến (x và y) có nhiều nhất là 6 hạng tử.

Lời giải chi tiết :

Bạn Chung đúng. Đó là đa thức \({x^2} + {y^2} + xy + x + y + 1.\)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Kết nối tri thức với cuộc sống

- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 8

Lớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK