1.
Cho hai góc kề bù AOB và BOC. Tia OM nằm giữa hai tia OB và OC. Tia ON là tia đối của tia OM. Khi đó cặp góc đối đỉnh là cặp góc nào trong các cặp góc sau đây?
A. \(\widehat {BOM}\) và \(\widehat {CON}\) |
B.\(\widehat {AOB}\) và \(\widehat {AON}\) |
C. \(\widehat {AOM}\) và \(\widehat {CON}\) |
D. \(\widehat {COM}\) và \(\widehat {CON}\). |
+ Vẽ hình
+ Hai góc đối đỉnh là hai góc mà mỗi cạnh của góc này là tia đối của một cạnh của góc kia.
Cặp góc đối đỉnh là cặp góc \(\widehat {AOM}\) và \(\widehat {CON}\)
Chọn C
2.
Trong các khẳng định sau, khẳng định nào đúng?
A. Hai góc bằng nhau thì đối đỉnh;
B. Hai góc không đối đỉnh thì không bằng nhau;
C. Hai góc đối đỉnh thì bằng nhau;
D. Cả ba khẳng định trên đều đúng.
Tính chất 2 góc đối đỉnh
A. Sai vì 2 góc bằng nhau chưa chắc đã đối đỉnh
B. Sai vì 2 góc không đối đỉnh cũng có thể bằng nhau (chỉ cần số đo của chúng bằng nhau)
C. Đúng
Chọn C
3.
Hai đường thẳng cắt nhau tạo thành bốn góc khác góc bẹt. Biết số đo của một trong bốn góc đó là \({65^0}\). Khi đó số đo của ba góc còn lại là:
A.\({65^0};{110^0};{120^0};\) |
B. \({65^0};{65^0};{115^0};\) |
C. \({115^0};{115^0};{50^0};\) |
D. \({65^0};{115^0};{115^0}.\) |
Hai góc đối đỉnh thì bằng nhau
Hai góc kề bù có tổng số đo là 180 độ.
Giả sử hai đường thẳng AB và CD cắt nhau tại O, tạo ra góc BOC có số đo \(65^0\)
\(\Rightarrow \widehat{AOD}=\widehat{BOC}=65^0\) (2 góc đối đỉnh)
\(\widehat{AOB}+\widehat{BOC}=180^0\) (2 góc kề bù) nên \(\widehat{AOB}=180^0-65^0=115^0\)
\(\widehat{COD}=\widehat{AOB}=115^0\) (2 góc đối đỉnh)
Chọn D
4.
Hai đường thẳng cắt nhau tạo thành bốn góc khác góc bẹt. Số đo của bốn góc đó có thể là trường hợp nào trong các trường hợp sau đây?
A.\({70^0};{70^0};{70^0};{110^0}\) |
B. \({60^0};{120^0};{120^0};{120^0};\) |
C. \({80^0};{50^0};{130^0};{100^0};\) |
D. \({90^0};{90^0};{90^0};{90^0}.\) |
Hai góc đối đỉnh thì bằng nhau
Hai góc kề bù có tổng số đo là 180 độ.
2 đường thẳng cắt nhau tạo thành 2 cặp góc đối đỉnh
Mà 2 góc đối đỉnh thì bằng nhau
Chọn D
5.
Hai đường thẳng AB và CD cắt nhau tại O. Cho OM là tia phân giác của góc BOD và \(\widehat {BOM} = {30^0}\). Số đo của góc AOC bằng:
A.\({30^0};\) |
B. \({60^0};\) |
C. \({120^0};\) |
D. Một kết quả khác. |
Nếu OM là tia phân giác của góc BOD thì \(\widehat{BOM}=\widehat{MOD}=\dfrac{1}{2}.\widehat{BOD}\)
Hai góc đối đỉnh thì bằng nhau
Vì OM là tia phân giác của góc BOD thì \(\widehat{BOM}=\widehat{MOD}=\dfrac{1}{2}.\widehat{BOD}\) nên \(\widehat{BOD}=2. \widehat{BOM}=2.30^0=60^0\)
Ta có: \(\widehat{AOC}=\widehat{BOD}\) ( 2 góc đối đỉnh)
Do đó, \(\widehat{AOC}=60^0\)
Chọn B
6.
Cho hình 3.29.
a) Cặp góc so le trong là cặp góc
A.\(\widehat {{M_1}},\widehat {{M_2}};\) |
B. \(\widehat {{M_1}},\widehat {{N_1}};\) |
C. \(\widehat {{M_1}},\widehat {{N_2}};\) |
D. \(\widehat {{M_2}},\widehat {{N_1}}.\) |
b) Cặp góc đồng vị là cặp góc:
A.\(\widehat {{M_1}},\widehat {{M_2}};\) |
B. \(\widehat {{M_1}},\widehat {{N_1}};\) |
C. \(\widehat {{M_1}},\widehat {{N_2}};\) |
D. \(\widehat {{M_2}},\widehat {{N_1}}.\) |
Nhận biết các góc ở vị trí đặc biệt.
a) Chọn D
b) Chọn C
7.
Cho hình 3.30. Cặp góc \(\widehat {{A_1}};\widehat {{B_1}}\) là cặp góc:
A. So le trong;
B. Đối đỉnh;
C. Đồng vị;
D. Cả ba phương án trên đều sai.
Nhận biết các góc ở vị trí đặc biệt
\(\widehat {{A_1}};\widehat {{B_1}}\) là cặp góc đồng vị
Chọn C
8.
Cho Hình 3.31, đường thẳng a song song với đường thẳng b nếu
A.\(\widehat {{A_1}} = \widehat {{B_2}}\)
B. \(\widehat {{A_2}} = \widehat {{B_3}}\)
C. \(\widehat {{A_3}} = \widehat {{B_2}}\)
D. \(\widehat {{A_3}} = \widehat {{B_1}}\)
Dấu hiệu nhận biết hai đường thẳng song song.
a//b nếu đường thẳng c cắt hai đường thẳng a và b, tạo thành 1 cặp góc so le trong bằng nhau hoặc 1 cặp góc đồng vị bằng nhau.
Xét khẳng định D:
\(\widehat {{A_3}} = \widehat {{B_1}}\)
Mà 2 góc này ở vị trí so le trong
Do đó, a//b
Chọn D
9.
Cho Hình 3.32, biết \(a// b\).
Khẳng định nào sau đây là sai?
A.\(\widehat {{A_1}} > \widehat {{B_1}}\)
B. \(\widehat {{A_2}} = \widehat {{B_2}}\)
C. \(\widehat {{A_3}} = \widehat {{B_1}}\)
D. \(\widehat {{A_3}} = \widehat {{B_3}}\)
Tính chất 2 đường thẳng song song
Vì a//b nên \(\widehat {{A_1}} = \widehat {{B_1}};\widehat {{A_2}} = \widehat {{B_2}}; \widehat {{A_3}} = \widehat {{B_3}}\) ( 2 góc đồng vị);
\(\widehat {{A_3}} = \widehat {{B_1}}\) ( 2 góc so le trong)
Vậy khẳng định A sai; B,C,D đúng
Chọn A
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 7 - Năm thứ hai ở cấp trung học cơ sở, chúng ta đã dần quen với nhịp điệu học tập. Hãy tiếp tục nỗ lực và khám phá thêm những kiến thức mới mẻ!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK