Trang chủ Lớp 6 Toán 6 sách Kết nối tri thức Bài 26: Phép nhân và phép chia phân số Lý thuyết Phép nhân và phép chia phân số Toán 6 KNTT với cuộc sống: I. Nhân hai phân số+ Muốn nhân hai phân số...

Lý thuyết Phép nhân và phép chia phân số Toán 6 KNTT với cuộc sống: I. Nhân hai phân số+ Muốn nhân hai phân số...

Hướng dẫn giải lý thuyết Phép nhân và phép chia phân số Toán 6 KNTT với cuộc sống - Bài 26. Phép nhân và phép chia phân số. Lý thuyết Phép nhân và phép chia phân số Toán 6 KNTT với cuộc sống ngắn gọn, đầy đủ...
I. Nhân hai phân số

+ Muốn nhân hai phân số, ta nhân các tử số với nhau và nhân các mẫu với nhau.

$\dfrac{a}{b}.\dfrac{c}{d} = \dfrac{{a.c}}{{b.d}}$

+ Muốn nhân một số nguyên với một phân số (hoặc một phân số với một số nguyên), ta nhân số nguyên với tử của phân số và giữ nguyên mẫu: $a.\dfrac{b}{c} = \dfrac{{a.b}}{c}.$

Ví dụ:

a) $\dfrac{{ - 1}}{4}.\dfrac{1}{5} = \dfrac{{\left( { - 1} \right).1}}{{4.5}} = \dfrac{{ - 1}}{{20}}$

b) $2.\dfrac{4}{5} = \dfrac{{2.4}}{5} = \dfrac{8}{5}$.

II. Một số tính chất của phép nhân phân số

+ Tính chất giao hoán: $\dfrac{a}{b}.\dfrac{c}{d} = \dfrac{c}{d}.\dfrac{a}{b}$

+ Tính chất kết hợp: $\left( {\dfrac{a}{b}.\dfrac{c}{d}} \right).\dfrac{p}{q} = \dfrac{a}{b}.\left( {\dfrac{c}{d}.\dfrac{p}{q}} \right)$

+ Nhân với số $1$: $\dfrac{a}{b}.1 = 1.\dfrac{a}{b} = \dfrac{a}{b}$, nhân với số $0$: $\dfrac{a}{b}.0 = 0$

+ Tính chất phân phối của phép nhân đối với phép cộng:

$\dfrac{a}{b}.\left( {\dfrac{c}{d} + \dfrac{p}{q}} \right) = \dfrac{a}{b}.\dfrac{c}{d} + \dfrac{a}{b}.\dfrac{p}{q}$

Ví dụ:

a)$\dfrac{{ - 3}}{{29}}.\dfrac{9}{{14}}.\dfrac{{ - 29}}{3} = \dfrac{{ - 3}}{{29}}.\dfrac{{ - 29}}{3}.\dfrac{9}{{14}} = \left( {\dfrac{{ - 3}}{{29}}.\dfrac{{ - 29}}{3}} \right).\dfrac{9}{{14}} = 1.\dfrac{9}{{14}} = \dfrac{9}{{14}}$

b)

$\begin{array}{l}\dfrac{7}{{23}}.\dfrac{{24}}{{11}} + \dfrac{7}{{23}}.\dfrac{{ - 2}}{{11}} = \dfrac{7}{{23}}.\left( {\dfrac{{24}}{{11}} + \dfrac{{ - 2}}{{11}}} \right)\\ = \dfrac{7}{{23}}.2 = \dfrac{{14}}{{23}}\end{array}.$

III. Chia phân số

a) Số nghịch đảo

Hai số gọi là nghịch đảo của nhau nếu tích của chúng bằng $1$.

Ví dụ: Số nghịch đảo của $\dfrac{5}{6}$ là $\dfrac{6}{5}$; số nghịch đảo của $ - 5$ là $ - \dfrac{1}{5}$.

b) Qui tắc chia hai phân số

Muốn chia một phân số hay một số nguyên cho một phân số, ta nhân số bị chia với số nghịch đảo của số chia.

$\dfrac{a}{b}:\dfrac{c}{d} = \dfrac{a}{b}.\dfrac{d}{c} = \dfrac{{a.d}}{{b.c}}$

$a:\dfrac{c}{d} = a.\dfrac{d}{c} = \dfrac{{a.d}}{c}\left( {c \ne 0} \right)$

Ví dụ: $\dfrac{{ - 1}}{6}:\dfrac{3}{{13}} = \dfrac{{ - 1}}{6}.\dfrac{{13}}{3} = \dfrac{{\left( { - 1} \right).13}}{{6.3}} = \dfrac{{ - 13}}{{18}}$.

CÁC DẠNG TOÁN VỀ PHÉP NHÂN, PHÉP CHIA PHÂN SỐI. Tìm số nghịch đảo của một số cho trước

+ Viết số cho trước dưới dạng $\dfrac{a}{b}\left( {a;b \in Z;a;b \ne 0} \right)$

+ Số nghịch đảo của $\dfrac{a}{b}$ là $\dfrac{b}{a}$

+ Số $0$ không có số nghịch đảo

+ Số nghịch đảo của số nguyên $a{\kern 1pt} \left( {a \ne 0} \right)$ là $\dfrac{1}{a}.$

II. Thực hiện phép nhân, chia phân số

Áp dụng qui tắc chia hai phân số:

Muốn chia một phân số hay một số nguyên cho một phân số, ta nhân số bị chia với số nghịch đảo của số chia.

$\dfrac{a}{b}:\dfrac{c}{d} = \dfrac{a}{b}.\dfrac{d}{c} = \dfrac{{a.d}}{{b.c}}$ ; $a:\dfrac{c}{d} = a.\dfrac{d}{c} = \dfrac{{a.d}}{c}\left( {c \ne 0} \right)$

III. Tìm số chưa biết trong một tích, một thương

+ Muốn tìm một trong hai thừa số, ta lấy tích chia cho thừa số đã biết+ Muốn tìm số chia, ta lấy số bị chia chia cho thương+ Muốn tìm số bị chia, ta lấy số chia nhân với thương.

IV. Tính giá trị biểu thức. So sánh giá trị hai biểu thức

- Ta sử dụng các qui tắc cộng, trừ, nhân, chia đã học và chú ý đến thứ tự thực hiện phép tính.+ Đối với biểu thức không chứa ngoặc ta thực hiện theo thứ tự:

Lũy thừa$ \to $ nhân, chia $ \to $ cộng, trừ

+ Đối với biểu thức có dấu ngoặc ta thực hiện theo thứ tự: $\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}$.

- Để so sánh giá trị hai biểu thức ta thực hiện tính giá trị biểu thức rồi so sánh kết quả.

image

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Kết nối tri thức với cuộc sống

- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 6

Lớp 6 - Năm đầu tiên của cấp trung học cơ sở, mọi thứ đều mới mẻ và đầy thách thức. Hãy tự tin làm quen với bạn bè mới và đón nhận những cơ hội học tập thú vị!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK