Trang chủ Toán Học Lớp 6 Chứng tỏ rằng phân số     n + 2  phần n + 1      là phân số tối giản với mọi STN ...
Câu hỏi :

Chứng tỏ rằng phân số     n + 2  phần n + 1      là phân số tối giản với mọi STN  n

Lời giải 1 :

`\color{#1c1c1c}{\text{I}}^(\color{#363636}{\text{t}}^(\color{#4f4f4f}{\text{s}}^(\color{#696969}{\text{m}}^(\color{#828282}{\text{e}}^(\color{#9c9c9c}{\text{F}}^(\color{#b5b5b5}{\text{r}}^(\color{#cfcfcf}{\text{e}}^\color{#eee9e9}{\text{d}})))))))`

Muốn `(n + 2)/(n + 1)` tối giản thì `ƯCLN(n + 2, n + 1) = 1` và `n ne 0`

    Gọi `ƯCLN(n + 2, n + 1) = d`.Ta có:

           `=> (n + 2) \vdots d`

           `=> (n + 1) \vdots d`

                  `=> (n + 2) - (n + 1) = 1 \vdots d`

                  `=> d = 1`

                  `=> ƯCLN(n + 2, n + 1) = 1`

           Vậy: `(n + 2)/(n + 1)` là phân số tối giản với mọi số tự nhiên `n(n ne 0)`

 

Lời giải 2 :

Đáp án:

 

Giải thích các bước giải:

 `(n+2)/(n+1)`

`  Gọi   ƯCLN_(n+2;n+1)=d`

`=>(n+2)-(n+1) vdots d`

`=>n+2-n-1  vdots d`

`=>1 vdots d`

`=>d=1`

` Vậy   phân   số   (n+2)/(n+1)    là    phân    số     tối   giản   `

` Ngochoa#~~`

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống, toán học là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ". Hãy kiên trì và không ngừng nỗ lực trong việc chinh phục những con số và công thức này!

Nguồn :

Wikipedia - Bách khoa toàn thư

Tâm sự lớp 6

Lớp 6 - Là năm đầu tiên của cấp trung học cơ sở, chúng ta được sống lại những kỷ niệm như ngày nào còn lần đầu đến lớp 1, được quen bạn mới, ngôi trường mới, một tương lai mới. Hãy tận dụng cơ hội này để làm quen và hòa nhập thật tốt!

Nguồn :

sưu tập

Copyright © 2024 Giai BT SGK