Trang chủ Toán Học Lớp 10 Có hay không các số nguyên a,b sao cho: 2 (a + b√2023 = 2024 2023√2023?
Câu hỏi :

Giải giúp bé bài toán khó 

image

Có hay không các số nguyên a,b sao cho: 2 (a + b√2023 = 2024 2023√2023?

Lời giải 1 :

`AA` `n\inZZ` ; `n>=0`

Thì `\sqrt{n} \in QQ` `<=>` `QQ` là số chính phương

Giả sử tồn tại `a,b \in ZZ` thoả mãn điều kiện, có :

`(a+b\sqrt{2023})^2=2024+2023\sqrt{2023}`

`a^2+2ab\sqrt{2023}+b^2 . 2023=2024+2023\sqrt{2023}`

`<=>\sqrt{2023}(2ab-2023)=2024-a^2-2023b^2`

Dễ thấy `a,b \in ZZ`

`=>` `2ab-2023` là số lẻ

`=>` `2ab-2023 \ne0` , do đó :

`\sqrt{2023}=(2024-a^2 - 2023b^2)/(2ab-2023)` `\in QQ`

`=>` Mâu thuẫn, vì `2023` không phải là số chính phương

`=>` Vậy giả sử trên sai

`=>` Không tồn tại các số nguyên `a,b` sao cho thoả mãn đề bài

Lời giải 2 :

Giải thích các bước giải:

Ta có:
$(a+b\sqrt{2023})^2=2024+2023\sqrt{2023}$

$\to a^2+2ab\sqrt{2023}+2023b^2=2024+2023\sqrt{2023}$

$\to (a^2+2023b^2)+2ab\sqrt{2023}=2024+2023\sqrt{2023}$

Vì $\sqrt{2023}\in I$

$\to \begin{cases}a^2+2023b^2=2024\\ 2ab=2023\end{cases}$

Do $a, b\in Z$

$\to 2ab$ chẵn

Mà $2023$ lẻ

$\to 2ab=2023$ vô lý

$\to$Không tồn tại $a, b$ thỏa mãn đề 

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống, toán học là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ". Hãy kiên trì và không ngừng nỗ lực trong việc chinh phục những con số và công thức này!

Nguồn :

Wikipedia - Bách khoa toàn thư

Tâm sự lớp 10

Lớp 10 - Năm đầu tiên ở cấp trung học phổ thông, chúng ta sẽ có nhiều bạn bè mới đến từ những nơi khác nhau. Ngôi trường mới, xa nhà hơn, mở ra một thế giới mới với nhiều điều thú vị. Hãy mở lòng đón nhận và tận hưởng những trải nghiệm mới!

Nguồn :

sưu tập

Copyright © 2024 Giai BT SGK