3. Trong mặt phẳng tọa độ Oxy cho tam giác ABC biết A(1;-3), B(2; 4), I(1;-4) là trung điểm của BC.
a. Tìm tọa độ điểm C.
b. Tính độ dài ba cạnh của tam giác và vecto AB× vecto AC, trọng tâm tam giác ABC, tính góc A
c. Tìm tọa độ điểm P Ox sao cho tam giác PAB vuông tại B.
a) Tọa độ điểm I là trung điểm đoạn BC nên có tọa độ: xI = (xB + xC)/2 yI = (yB + yC)/2=>: xC = 0;
yC = -5
Vậy tọa độ điểm C là: C(0; -5)
b) Độ dài các cạnh: AB = √((xB - xA)2 + (yB - yA)2) = √(1 + 7) = √8 = 2√2 BC = √((xC - xB)2 + (yC - yB)2) = √(4 + 9) = √13 AC = √((xC - xA)2 + (yC - yA)2) = √(1 + 4) = √5
Vectơ AB = (xB - xA, yB - yA) = (1, 7) Vectơ AC = (xC - xA, yC - yA) = (-1, -2)
cosA = (AB^2 + AC^2 - BC^2)/(2.AB.AC) = (8 + 5 - 13)/(2x2√2x√5) = 0 => A = 90 độ
=> vec AB x vec AC =0
Tọa độ trọng tâm G: xG = (xA + xB + xC)/3 = 1/3 yG = (y A + yB + yC)/3 = -4
c) Phương trình đường thẳng qua B vuông góc với AB: y - yB = -1/(xB - xA).(x - xB)
= -1/1.(x - 2) y - 4 = - (x - 2) y = -x + 6
Điểm P thuộc đường thẳng trên và trên trục Ox nên yP = 0. Suy ra: xP = 6
Vậy P(6; 0)
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống, toán học là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ". Hãy kiên trì và không ngừng nỗ lực trong việc chinh phục những con số và công thức này!
Lớp 10 - Năm đầu tiên ở cấp trung học phổ thông, chúng ta sẽ có nhiều bạn bè mới đến từ những nơi khác nhau. Ngôi trường mới, xa nhà hơn, mở ra một thế giới mới với nhiều điều thú vị. Hãy mở lòng đón nhận và tận hưởng những trải nghiệm mới!
Copyright © 2024 Giai BT SGK