Trong Vật lí, ta biết rằng khi mắc song song hai điện trở \({R_1}\) và \({R_2}\) thì điện trở tương đương R của mạch điện được tính theo công thức \(R = \frac{{{R_1}{R_2}}}{{{R_1} + {R_2}}}\) (theo Vật lí đại cương, NXB Giáo dục Việt Nam, 2016).
Giả sử một điện trở \(8\Omega \) được mắc song song với một biến trở như Hình 1.33. Nếu điện trở đó được kí hiệu là \(x\left( \Omega \right)\) thì điện trở tương đương R là hàm số của x. Vẽ đồ thị của hàm số \(y = R\left( x \right),x > 0\) và dựa vào đồ thị đã vẽ, hãy cho biết:
a) Điện trở tương đương của mạch thay đổi thế nào khi x tăng.
b) Tại sao điện trở tương đương của mạch không bao giờ vượt quá \(8\Omega \).
Sử dụng kiến thức về sơ đồ khảo sát hàm số phân thức để khảo sát và vẽ đồ thị hàm số:
Sơ đồ khảo sát hàm số phân thức
1. Tìm tập xác định của hàm số.
2. Khảo sát sự biến thiên của hàm số:
+ Tính đạo hàm y’. Tìm các điểm tại đó y’ bằng 0 hoặc đạo hàm không tồn tại.
+ Xét dấu y’ để chỉ ra các khoảng đơn điệu của hàm số.
+ Tìm cực trị của hàm số.
+ Tìm các giới hạn tại vô cực, giới hạn vô cực và tìm tiệm cận của đồ thị hàm số.
+ Lập bảng biến thiên của hàm số.
3. Vẽ đồ thị của hàm số dựa vào bảng biến thiên.
Khi một điện trở \(8\Omega \) được mắc song song với một biến trở \(x\left( \Omega \right)\) thì điện trở tương đương của mạch là: \(R\left( x \right) = \frac{{8x}}{{x + 8}}\left( \Omega \right)\)
Vẽ đồ thị hàm số \(y = R\left( x \right) = \frac{{8x}}{{x + 8}}\) với \(x > 0\).
1. Tập xác định của hàm số: \(\left( {0; + \infty } \right)\)
2. Sự biến thiên:
\(R’\left( x \right) = \frac{{64}}{{{{\left( {x + 8} \right)}^2}}} > 0\forall x > 0\)
Hàm số đồng trên \(\left( {0; + \infty } \right)\).
Hàm số không có cực trị.
\(\mathop {\lim }\limits_{x \to + \infty } R\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{8x}}{{x + 8}} = 8\).
Do đó, đồ thị hàm số \(y = R\left( x \right) = \frac{{8x}}{{x + 8}}\) với \(x > 0\) nhận đường thẳng \(y = 8\) làm tiệm cận ngang (phần bên phải trục Oy).
Bảng biến thiên:
3. Đồ thị:
Giao điểm của đồ thị hàm số với trục tung là (0; 0).
Đồ thị hàm số \(y = R\left( x \right) = \frac{{8x}}{{x + 8}}\) đi qua các điểm (8; 4); \(\left( {12;\frac{{24}}{5}} \right)\).
a) Vì \(R’\left( x \right) = \frac{{64}}{{{{\left( {x + 8} \right)}^2}}} > 0\forall x > 0\) nên khi x tăng thì điện trở tương đương của mạch tăng.
b) Vì \(R’\left( x \right) = \frac{{64}}{{{{\left( {x + 8} \right)}^2}}} > 0\forall x > 0\) và \(\mathop {\lim }\limits_{x \to + \infty } R\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{8x}}{{x + 8}} = 8\) nên điện trở tương đương của mạch không bao giờ vượt quá \(8\Omega \).
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối của thời học sinh, với nhiều kỳ vọng và áp lực. Đừng quá lo lắng, hãy tự tin và cố gắng hết sức mình. Thành công sẽ đến với những ai nỗ lực không ngừng!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK